
 Version 0.1

 Copyright © 2001 by Brian Marick. All Rights Reserved.
DRAFT (marick@visibleworkings.com) DRAFT

A Little Ruby, A Lot of Objects

Preface
Welcome to my little book. In it, my goal is to teach you a way to think about
computation, to show you how far you can take a simple idea: that all computation
consists of sending messages to objects. Object-oriented programming is no longer
unusual, but taking it to the extreme – making everything an object – is still supported by
only a few programming languages.

Can I justify this book in practical terms? Will reading it make you a better programmer,
even if you never use "call with current continuation" or indulge in "metaclass hackery"?
I think it might, but perhaps only if you're the sort of person who would read this sort of
book even if it had no practical value.

The real reason for reading this book is that the ideas in it are neat. There's an intellectual
heritage here, a history of people building idea upon idea. It's an academic heritage, but
not in the fussy sense. It's more a joyous heritage of tinkerers, of people buttonholing
their friends and saying, "You know, if I take that and think about it like this, look what I
can do!"

Prerequisites

With effort, someone who didn't know programming could read this book. I expect that
most readers will know at least one programming language, not necessarily an object-
oriented one.

I use a few simple mathematical ideas in some of the examples. The factorial function is
the most complex, and I explain a simplified form of it, rather than assume you know
what it is. I don't think the book requires any particular mathematical inclination, so don't
be scared off at the first sight of factorial.

Using the book
This book is written as a dialogue between two people, one who knows objects well, and
one who doesn't. The text builds cumulatively. If you don't understand something about
one chapter, you'll likely understand the next chapter even less. So I recommend you read
slowly. The characters in the book take frequent breaks. I think that's a good idea.

This book uses Ruby, a freely available language developed by Yukihiro Matsumoto, but
it is not a book about Ruby. Ruby constructs are introduced gradually, as they're needed,
rather than in any systematic order. They're described only enough to allow you to
understand code that contains them.

If you want to try variants of the examples, you may need a little more Ruby knowledge.
The example files (see below) define new constructs a little more completely. However,

DRAFT 2 DRAFT

even with the examples, this book is not a Ruby tutorial. If you want to use Ruby for
general-purpose programming – and you should, since it's a wonderful rapid-
development language for many types of applications - the book to read is Programming
Ruby, by David Thomas and Andrew Hunt (available online at
www.rubycentral.com/book/index.html). You'll find that Ruby has many more features
than this book describes.

Notation

Ruby text and values printed by the Ruby interpreter are in italic font. Everything else is
in normal font. Important terms are in bold when they're defined.

Sometimes, one participant will show a partially completed snippet of Ruby code. The
unfinished part is indicated with ???:

def finish_this
 ???
end

Bold italic font is used to draw your attention to a part of some Ruby code

class Something
 def some_function
 "look here"
 end
end

Running the examples

I recommend you play with the examples as you read.

As of this writing, Ruby works on Unix and Windows. It is available from www.ruby-
lang.org. The Windows download comes from www.rubycentral.com, at
www.rubycentral.com/downloads/ruby-install.html.

I recommend you use the Ruby interpreter irb. Here's an example:

> irb
irb(main):001:0> 1 + 1
2
irb(main):002:0>

All of the examples in the book are available from www.visibleworkings.com/little-
ruby/source. At the points in the text where an example is complete, a marginal note
names the example's file:

DRAFT 3 DRAFT

Exactly. What do you suppose this Ruby
function does?

def factorial(n)
 if n == 1
 n
 else
 n * factorial(n-1)
 end
end

ch1-factorial.rb

The name tells me it computes factorial,
but I’m not sure how.

You can either cut and paste the example into irb, or load the example into Ruby like
this:

> irb
irb(main):001:0> load 'ch1-factorial.rb'
true
irb(main):002:0>

(This assumes you're running irb in the directories where the examples live.) Thereafter,
you can type things like this:

irb(main):002:0> factorial 5
120
irb(main):003:0>

Acknowledgements
This book was inspired by The Little Lisper, by Daniel P. Friedman and Mattthias
Felleisen. I fell in love with their book around 1984. The fourth edition, titled The Little
Schemer, is still available. If you like this book, you'll like that one too, especially
because it treats computation from a different perspective.

The Little Lisper is famous for using food in its examples. As the authors say, "[it] is not
a good book to read while dieting." As an ironic homage to my inspiration, one of the
characters here is an exercise freak. In that way, this is a very different book.

I received help and encouragement from people who read drafts: Al Chou, Mikkel
Damsgaard, Joani DiSilvestro, Pat Eyler, Darrell Ferguson, Tammo Freese, Hal E.
Fulton, Ned Konz, Dragos A. Manolescu, Dawn Marick, Pete McBreen, Nat Pryce,
Christopher Sawtell, Kevin Smith, Dave Thomas, David Tillman, and Eugene
Wallingford.

 Version 0.5

 Copyright © 2001 by Brian Marick. All Rights Reserved.
DRAFT (marick@visibleworkings.com) DRAFT

A Little Ruby, A Lot of Objects

Chapter 1: We've Got Class...

What’s this?

1
The Integer 1

How can I make a 2? 2

What’s another way? 2 × 1
But that seems silly.

Bear with me.
How can I compute a 6?

3 × 2 × 1

How about 24? 4 × 3 × 2 × 1

Does all this look familiar? Yes. Isn’t it a function called factorial?

Right. Do you know what this means when
you see it in a math textbook?

5!

It means "5 factorial". It computes the
value 120 like this:

5 × 4 × 3 × 2 × 1

Exactly. What do you suppose this Ruby
function does?

def factorial(n)
 if n == 1
 n
 else
 n * factorial(n-1)
 end
end

ch1-factorial.rb

The name tells me it computes factorial,
but I’m not sure how.

Let’s figure it out. Can you turn the
computation of n! into a single
multiplication?

If I knew (n-1)!, then n! would be
n × (n-1)!

Look familiar? Yes, that’s like this line of the def:
n * factorial(n-1)

DRAFT 2 DRAFT

But what happens if the n in n! is 1? I better not multiply by zero, so I suppose I
should stop.

Stop? I mean I shouldn’t multiply the argument 1
by anything. I know the answer is 1
without multiplying.

Do you see that in the definition of
factorial?

Yes. That looks like the if statement that
returns n:

if n == 1
 n

So can you describe factorial in words? "If the argument n is 1, the result is 1.

Otherwise, the result is n * factorial(n-1)."

And what is the result of this?
factorial(5)

120, because that’s the result of
5 * factorial(4), which is in turn
4 * factorial(3), which is 3 * factorial(2),
which is 2 * factorial(1), which is 1.

This is an interesting style of programming
– breaking problems into smaller pieces, all
solved in the same way. Would you like to
know more about it?

I would.

The book to read is The Little Schemer, by
Daniel P. Friedman and Matthias Felleisen.

OK. But why should I keep reading this
book?

You already bought it. Actually, I’m just browsing in the
bookstore. I happened to pass it while I was
jogging vigorously and healthily after
consuming a breakfast of cauliflower and
wheat germ.

Oh. Well, this book is about a different
thing. It’s about object-oriented
programming in its most free and most
fundamental form.

That sounds interesting, but I have no idea
what an "object" is.

What if I told you this was an object:
1

I would be unimpressed. What does that
mean?

It means that you can do more to it than
multiply and divide.

Such as?

DRAFT 3 DRAFT

What do you suppose this means?
1.next

2?

Right. Can you describe what’s going on? The Integer object 1 is asked for the next
Integer, which is 2.

The jargon is that 1 is sent the next
message, and it answers (or returns) 2.

And what does this mean?

1.next.next

3, because 1.next is 2 and 2.next is 3.
But somehow this doesn’t seem an
improvement on 1 + 1 + 1.

It isn’t – yet. But what do you suppose this
would mean?

5.new_factorial

Perhaps it would compute 5! in a new way,
a way with messages. It would send the
new_factorial message to 5, which would
answer the result 120. But would that work
if I tried it?

Not yet. First we have to tell the Integers
how new_factorial works. That means
defining a method. A method is the
function that’s invoked when a message is
received by an object.

We'll define Integer's new_factorial like
this:

class Integer
 def new_factorial
 ???
 end
end

How do you think new_factorial should
work?

Roughly like factorial does.
5.new_factorial should multiply 5 by
4.new_factorial.

DRAFT 4 DRAFT

Using the structure of factorial for
new_factorial, we get this:

class Integer
 def new_factorial
 if ??? == 1
 ???
 else
 ??? * (??? - 1).new_factorial
 end
 end
end

Why are the ??? marks there?

factorial took an argument n, which was
used in those places. new_factorial doesn't
have an argument. It doesn't need one. The
number to compute with is the Integer
new_factorial is sent to.

So we need something other than n to use
in those spots.

Within the definition of any method, self
always means the object itself.

So here is new_factorial:

class Integer
 def new_factorial
 if self == 1
 self
 else
 self * (self - 1).new_factorial
 end
 end
end

ch1-new-factorial.rb

Can you say that in words?

"I am an Integer.

To compute new_factorial, I first check
whether I am 1. If so, I return myself, 1, the
factorial of 1.

If I’m bigger than 1, the right result is
obtained by multiplying me by the factorial
of the number one less than me."

Excellent. And what does 5.new_factorial
do?

5.new_factorial sends the message
"new_factorial" to an object of class
Integer, which responds by invoking the
method of the same name and returning its
result. Is that right?

DRAFT 5 DRAFT

Exactly. That’s pretty neat. I confess that I’m a bit
disappointed, though, that there are two
kinds of computation: message sends like
new_factorial, and ordinary
multiplications.

Ah, but there really aren’t. Let’s be
explicit. What do you suppose is the result
of this?

5.send("new_factorial")

That seems to be another way of writing
"send the message new_factorial to 5", so I
suppose the answer is 120.

Precisely. And what do you suppose is the
result of this?

3.send("*", 2)

Send the message * to the object 3, giving
it the argument 2? That would mean the
same thing as this:

3 * 2
That is,

6

Right again. What happens in response to
3*2 is the same old (or, rather, new)
message sending. "3 * 2" is just syntactic
sugar.

Agh! Sugar is poison!

The designers of some languages agree.
They use less syntactic sugar. Everything is
more explicitly a message send. But people
have grown up expecting some things, like
arithmetic, to look a certain way, so Ruby
follows that convention.

But underneath, all computation consists of
sending messages to objects, possibly
including other objects as arguments.

When I write a program, I’ll be continually
saying, "O object, please do such-and-so
for me, using these other objects to help",
right?

Exactly. In some cases, you’ll be thinking
explicitly in those terms. In others, you’ll
probably let the syntactic sugar hide the
underpinnings from you.

You saw another example of syntactic
sugar earlier. Where’s the sugar in this?

factorial(5)

factorial is the message, but it doesn’t
seem to be sent to any object, unlike
new_factorial. There must be an implicit
receiver when none is explicitly mentioned.

DRAFT 6 DRAFT

That implicit receiver is self. So this:
factorial(5)

is exactly the same as this:
self.factorial(5)

I understand what self is when I write
something like this:

5.new_factorial
But what is it when I write:

self.factorial(5)
outside of any class or def?

For the moment, I shouldn't say. But as
long as factorial doesn’t use self (which it
doesn’t), what exactly self is doesn’t
matter. I promise that you’ll understand the
answer by the end of the book.

Perhaps now would be a good time for a
pizza break?

Thanks, but heavy food makes me sleepy.
A brisk set of jumping jacks should do the
trick.

The First Message
Computation is sending messages to objects.

What’s this?

"Ruby"

It’s a String.

And this?
"a"

Another String. This one’s only one
character long.

And this?
"3"

A one-character String, where the one
character happens to be 3.

Is "3" the same thing as 3?

No. One’s an Integer and one’s a String.

What do you suppose this does?
"a".next

It asks for the next string after "a". "b"
seems like it might be a useful answer.

And how about this?
"aaa".next

"aab"?

Right. What if you sent the "*" message to
a string, as is done here:

"Ruby" * 3
or here:

"Ruby".send("*", 3)

I suppose you’d get "Ruby" three times,
like this:

"RubyRubyRuby"

DRAFT 7 DRAFT

Do you think that every message you can
send to a String can also be sent to an
Integer?

That doesn’t seem sensible. There must be
things you can do to Strings that make no
sense for Integers.

How about "upper case yourself"? That doesn’t seem to make sense for
Integers.

What’s the result of this?
"Ruby".upcase

"RUBY"

And the result of this?
3.upcase

A message about "undefined method
'upcase'".

Can you think of a message to an Integer
that wouldn’t make sense for a String?

How about "Ruby".new_factorial? That
shouldn’t work, because we defined
new_factorial for Integers.

Integer and String are both classes. Judging
from what you've seen so far, what are
classes for?

An object's class determines which
messages it responds to.

If you could look at String’s definition of
the method next, do you suppose it would
look the same as Integer’s definition of
next?

It doesn’t seem like it could. They behave
differently. For example, "z".next is "aa".
Computing that seems different than
computing that 9.next is 10.

So two messages can be the same, but that
doesn’t mean the methods invoked when
they’re sent are. We say that message
names are polymorphic.

I see, though fancy words like
"polymorphic" make me want to jump up
and run around in tight little circles.

We won’t use the word much, but the idea
is important.

I’m afraid that I don’t see what the big deal
is.

Let’s look at a more substantial example.
What should be the result of executing
this?

ascending?(1, 2, 3)

true, I suppose, since 3 is bigger than 2 and
2 is bigger than 1.

Can you write ascending?

Sure:
def ascending?(first, second, third)
 first < second && second < third
end

ch1-ascending.rb

DRAFT 8 DRAFT

What should be the result of executing
this?
 ascending?("first", "second", "third")

true as well. "third" comes after "second"
in the dictionary, and "second" comes after
"first".

Will the ascending? you wrote work for
Strings?

Yes, because it’s not dependent on the
classes of its arguments.

Can you be more specific?

first < second means "send the < message
to first, passing second as an argument". If
first is an Integer, < means what it
normally means for numbers. But if it’s a
String, a completely different method is
used, one that compares strings in
dictionary order.

Have we seen something useful?

It’s nice that I can write one method that
works for two classes. Without
polymorphism, I’d have to decide whether
I wanted to go to the trouble of writing an
ascending? for Strings.

You’ve seen two classes: Integer and
String. You’ll soon see how to create your
own classes. When you create your first
one, will ascending? work with it?

Yes, provided it defines the method <.

Shall we do that? I’m eager.

In a moment. I’m feeling a bit peckish right
now.

Have a celery stick.

The Second Message
Message names describe the desired result, independently of the object that provides it.

What’s this?

""

It's a String containing no characters.

And this?
"n"

A String containing one character.

And this?
"nn"

A String containing two characters.

DRAFT 9 DRAFT

How can a String represent an Integer?

A String with n characters represents the
Integer n.

Let's make a class that represents Integers
that way. What would be a good name?

How about FunnyNumber?

OK. How would we begin to define
FunnyNumber?

class FunnyNumber
 ...
end

Suppose I want to create a new
FunnyNumber that represents the number
3. How should I do that?

There are three key words in your sentence:
"FunnyNumber", "new", and "3". But I'm
not sure how to put them together.

What is all computation? "All computation is sending messages to
objects, possibly including other objects as
arguments."

Just as I can send the "*" message to the
Integer 3, asking it to multiply itself by 2,
perhaps I can send the "new" message to
the class FunnyNumber, asking it to give
me a new FunnyNumber that represents 3.

What would that look like?

FunnyNumber.new(3)

Exactly.

There's something odd here, something
tantalizing, something invigorating,
something that makes me feel able to bench
press 150 kilos!

And what's that?

Let me see if I can express it. Up to now, I
thought there were two things: objects, and
their classes. You sent messages to objects;
the object's class determined what methods
were invoked.

But now, it seems that classes are somehow
themselves objects that can be sent
messages, like new. For no reason I can
articulate, that just seems incredibly
powerful.

DRAFT 10 DRAFT

It is indeed. Classes as objects are the
computational equivalent of performance
enhancing drugs. They give you the
intellectual leverage to perform great feats
of mental strength.

I'm ready! Load up the conceptual barbell!

However, as with physical weights, it's best
to build up gradually to the desired goal.

Rats. By the way, to be consistent, you
should from now on use the same font for
class names as you do for other objects.

You're right. Once we have a
FunnyNumber class, what would this code
do?

FunnyNumber.new(3).inspect

It would create a new FunnyNumber, then
send it the inspect message. I suppose that
puts the FunnyNumber into some pleasant
format.

Such as "Funny 3 (nnn)", perhaps?

OK. The "nnn" is the representation and 3
is the Integer represented (because "nnn"
has length 3).

inspect answers a String. To help you
define it, let me tell you some of how string
formatting works in Ruby. Suppose s has
the value "hi". This String:

"s.length = #{s.length}"

turns into "s.length = 2". (Still more
syntactic sugar.) Anything inside #{} is
computed, and its value is substituted into
the String that contains it.

inspect would look something like this:

 class FunnyNumber
 def inspect
 "Funny #{???.length} (#{???})"
 end
 end

I'm not sure what the ??? is, though, except
that it's a String. For FunnyNumber.new(3),
it's the String "nnn".

Could it be self?

I don't think so. self is the FunnyNumber
itself. I'm looking for something that's the
String that FunnyNumber uses to represent
Integers.

DRAFT 11 DRAFT

Let's just call it @rep, short for
"representation". @rep will be given a
value when the FunnyNumber is created
(via FunnyNumber.new).

So here's inspect:

 class FunnyNumber
 def inspect
 "Funny #{@rep.length} (#{@rep})"
 end
 end

To be able to use inspect, you need a method defined
below. You can read on before trying inspect, or you can
load ch1-funnynumber.rb now.

Correct.

The @ in @rep must mean something. The
argument n to factorial didn't have an @
sign in front of it.

It means that @rep is an instance variable.
When an object is created with new, it's
called an instance of its class. The instance
variables are shared by all of that object's
methods.

So any method that I write for
FunnyNumber can use @rep when it needs
to use the representation.

Yes. Where does @rep's initial value come
from?

It must be first created as a result of the call
to new:

FunnyNumber.new(3)

FunnyNumber.new creates a FunnyNumber
instance. new takes the argument 3, which
should be used to initialize @rep with the
representation for 3 (which is "nnn").

You're implying that one object (the class
FunnyNumber) should reach into another
(the instance it creates) and set its instance
variable.

Would that be a problem?

Perhaps not, but it would be annoyingly
inconsistent. Before, we concluded that all
computation is sending messages to
objects, asking them to do something.
Here, the FunnyNumber class isn't asking,
it's ripping open the instance and messing
with its guts.

Put so graphically, that does sound
unappealing. Perhaps the FunnyNumber
class, having created the instance, should
send it a message called initialize.

So new would look something like this:

def new(an_integer)
 instance = ??? instance creation magic
 instance.initialize(an_integer)
 instance
end

DRAFT 12 DRAFT

What does the instance alone on a line
mean?

It means that the value of the whole
method is the newly-created instance.
That's what new answers.

That's what new should look like. You
don't have to write new, though, because
it's provided automatically by Ruby.

I do have to write initialize.

It would look like this:

class FunnyNumber
 def initialize(from_integer)
 ???
 end
end

What should ??? be?

How about this?

def initialize(from_integer)
 @rep = "n" * from_integer
end

That works because this:
"n" * 3

computes this:
"nnn".

ch1-funnynumber.rb
So, can you describe what this does?

FunnyNumber.new(3).inspect

new is a method of the FunnyNumber class.
It creates a new instance, then calls that
instance's initialize method, passing the
value 3.

initialize sets @rep, then returns to new.
new answers (or returns) the newly-created
object.

That object is sent the inspect message,
which answers this string:

"Funny 3 (nnn)"

Whew! That's quite a workout!

DRAFT 13 DRAFT

You know everything you need to create
new classes. Can you add < to
FunnyNumber?

The skeleton would look like this:

class FunnyNumber
 def <(other)
 ???
 end
end

I can think of several ways to fill in the
???'s.

What's one way that would not work?

@argv.length < other.@argv.length

Why not?

The object getting the < message (self)
can't reach into the argument (other) and
peek at its instance variables.

You could make the instance variable
available via a method:

class FunnyNumber
 def rep
 @rep
 end

 def <(other)
 self.rep < other.rep
 end
end

But then anyone who wanted to could look
at the internal representation.

As a person, I'm fond of my heart (which
has a resting pulse rate of 52 beats per
minute, by the way), but I don't wear it on
my sleeve. Objects should be similarly
restrained.

How about this?

class FunnyNumber
 def length
 @rep.length
 end

 def <(other)
 self.length < other.length
 end
end

That's a little more modest, but what does
the concept "length" have to do with any
kind of "number"? Why should it make
any more sense to say this:

FunnyNumber.new(3).length
than this:

3.length?

If I'm going to calculate something from
@rep, I should calculate something useful.

DRAFT 14 DRAFT

How about this?

class FunnyNumber
 def as_integer
 @rep.length
 end

 def <(other)
 self.as_integer < other.as_integer
 end
end

ch1-ascending-funnynumber.rb

Yes, it seems generally useful to convert
FunnyNumbers to Integers.

It's interesting that the name is all that
changed – it's still length underneath. But if
I ever decide to use a different
representation – something other than a
String – I will always be able to make
as_integer work. I might not be able to
make length work.

Hiding representations behind general-
purpose interfaces is good object-oriented
design.

Can you now use our old friend ascending?

This is true:

ascending?(FunnyNumber.new(1),
 FunnyNumber.new(2),
 FunnyNumber.new(3))

Shall we move to a stair-climbing exercise
machine, then make our heartbeats
"greater" by "ascending" its stairs? (Ho,
ho!)

I'm going to have a pastry.

See you in the next chapter, then.

The Third Message
Classes provide interface and hide representation.

 Version 0.4

 Copyright © 2001 by Brian Marick. All Rights Reserved.
DRAFT (marick@visibleworkings.com) DRAFT

A Little Ruby, A Lot of Objects

Chapter 2: ...We Get It From Others

Exercise has left a fine sheen of sweat on
your brow. Are you ready to descend from
the stair-climbing machine?

I am.

Perhaps you should write a method called
descending?.

I want descending?(3, 2, 1) to be true:

def descending?(first, second, third)
 first > second && second > third
end

ch2-directions.rb

What kinds of classes will descending?
work with?

Any class that defines >.

Can you write a method never_descending?
It allows one of the arguments to be equal
to the next argument, but not greater.

never_descending?(1, 1, 2) is true
never_descending?(1, 2, 3) is true
never_descending?(2, 3, 2) is false

def never_descending?(first, second, third)
 first <= second && second <= third
end

ch2-directions.rb, again

What kinds of classes will
never_descending? work with?

Any class that defines <=.

I notice that the sweat on your brow has
been joined by a perplexed look.

I'm thinking about how to tell someone else
about this suite of methods I'm writing:

"ascending? works with any class that
defines <, descending? works with any
class that defines >, never_descending?
works with any class that defines <=..."

and so on and on and on for all the methods
in the suite.

DRAFT 2 DRAFT

Those are true statements.

Yes, but who wants to hear all that? What I
want to say is more like:

"You know the normal comparison
methods like <? This suite works with
any class that implements those."

Or, alternately, "This suite works when the
arguments implement the Comparable
protocol."

I take it that "implements a protocol" is
shorthand for "responds to the set of
messages named wherever it is that the
protocol is defined".

Yes.

Our class FunnyNumber doesn't implement
the Comparable protocol because it only
implements <. For a class to be
Comparable, surely it should also
implement >.

And so what would happen if you changed
the definition of ascending? from this:

def ascending?(first, second, third)
 first < second && second < third
end

to this:

def ascending?(first, second, third)
 third > second && second > first
end

ascending? would stop working with
FunnyNumber. But it would continue to
work with Integers and Strings because
they implement Comparable.

I can see another advantage to protocols.
Once I added < to FunnyNumber, I was
starting down a path – the path to a class
whose objects can be compared in a widely
accepted way. The Comparable protocol
reminds me of everything I need to do to
satisfy people's expectations of my code.

Would you like to satisfy those
expectations now? You'll need to define <,
<=, ==, >=, >, and a method called
between?.

Heck, no. It would be easy enough to do
(once you tell me what between? does). For
example, I can define > like this:

class FunnyNumber
 def >(other)
 self.as_integer > other.as_integer
 end
end

But the thought of writing all those trivial
methods... well, it doesn't fill me with any
great excitement.

DRAFT 3 DRAFT

Would you be willing to write a single
method? It would compare self to another
object, returning –1 if self is less than the
other, 0 if it has the same value, and +1 if
the other is larger.

Maybe. Is such a method defined for
Integer?

Yes. Its name is <=> (sometimes called
"the spaceship operator").

class FunnyNumber
 def <=>(other)
 self.as_integer <=> other.as_integer
 end
end

What have I gained?

Can you write comparison methods in
terms of <=>?

Sure. For example:

class FunnyNumber
 def >(other)
 (self <=> other) == 1
 end
end

What have I gained?

If you can do it, so can someone else. And
someone else did. They put the
Comparable protocol methods in a module
called Comparable. Just as ascending?
works with any class that responds to <, the
Comparable module works with any class
that responds to <=>.

Show me.

Here's all that FunnyNumber needs to do to
implement the Comparable protocol:

class FunnyNumber
 include Comparable
 def <=>(other)
 self.as_integer <=> other.as_integer
 end
end

ch2-comparable-funnynumber.rb

So does this line:
include Comparable

have the same effect as these?

def >(other)
 (self <=> other) == 1
end
def <(other)
 (self <=> other) == -1
end
...

DRAFT 4 DRAFT

Almost. There are some differences that
we'll learn about later.

Does it have something to do with a
module being an object, just like a class is
an object?

Indeed it does. Modules and classes are
very closely related.

Would you have to include Comparable in
order to say that FunnyNumber implements
the Comparable protocol?

I suppose if I wanted the extra work, I
could implement <, >, and all the other
Comparable methods myself.

Implementing a protocol is a matter of
which messages a class responds to.
Including a module is just a convenient
way of implementing a protocol.

So the most important thing about a
protocol is that it's an agreement among
programmers. It's a way for me to tell my
friends what kind of thing my class is.

Would you like to learn another way to add
a protocol and the methods that implement
it to your class?

Yes. But probably you should first interrupt
the conversation with one of your
messages.

The Fourth Message
Protocols group messages into coherent sets.

If two different classes implement the same protocol, programs that depend only on

that protocol can use them interchangeably.

Suppose we want FunnyNumber to ...

I'm getting tired of FunnyNumber. Can we
have something that has more to do with
the real world?

Okay. What's the realest part of the real
world?

Exercise.

As you wish. After you finished exercising,
I noticed you writing something down in a
notebook. What was it?

I record the results of exercising: the
number of calories consumed and so forth.

Let's begin, then, by creating a class that
models the simplest exercise machine you
use. What would that be?

Probably the rowing machine.

DRAFT 5 DRAFT

So we want a class that represents a single
session on a particular rowing machine.

class RowingSession
 ...
end

How would you identify a session?

By the name of the rowing machine and the
amount of time spent on it.

class RowingSession
 def initialize(name, time)
 @name = name
 @time = time
 end
end

What have you done here?

I've written the initialize method that will
be called by something like:

 RowingSession.new("buffy", 30)

It assigns the given name and time to
instance variables.

"Buffy the rowing machine"?

Look, I don't pick the names, I just use the
machines.

How would you print a report on the
calories consumed?

(You'll want to use Ruby's print method. It
prints a string to the output. If the string
ends with \n, print arranges for the next
print to start on a new line.)

I'd add this method within class
RowingSession:

class RowingSession
 def report
 print "#{@time} minutes on #{@name} = "
 print "#{calories} calories.\n"
 end
end

Why did you use two print statements to
print a single line?

A one-line print statement would be
marvelous, but this margin isn't large
enough to contain it.

DRAFT 6 DRAFT

What is calories? It's a method that will compute the number
of calories burned from the @time spent
exercising. I'll also define it within
RowingSession:

class RowingSession
 def calories
 @time * 6
 end
end

So how can we use your new class?

session = RowingSession.new("buffy", 30)
session.report

ch2-rowingsession.rb

And the result is this output:
30 minutes on buffy = 180 calories.

What's a more complicated exercise
machine?

A stair climber. It's computer-controlled, so
you can pick more than one type of
workout. I use two programs: a steady
climb, and one that simulates running hard
up a steep hill.

The number of calories you burn also
depends on your weight, since you're
expending energy lifting yourself.

So you need a new class.

class ClimbingSession
 def initialize(name, time, program,
 weight)
 @name = name
 @time = time
 @program = program
 @weight = weight
 end
end

Suppose you'd also written the calories
method. Could you then use the report
method you wrote for RowingSession?

report is a message you can send to objects
of class RowingSession. Objects of class
ClimbingSession wouldn't know anything
about it. But I wish I could use it. The code
for a ClimbingSession report would be
identical to RowingSession's version.

DRAFT 7 DRAFT

Could you use a module to provide report?

I could, I suppose. Just as module
Comparable provides a function < to any
class that includes it and defines <=>, I
could write a module CaloryReporter that
provides report to any class that includes it
and defines @time, @name, and calories.

But, frankly, the connection between the
two Session classes seems tighter than the
connection between Comparable and
FunnyNumber.

It does, doesn't it? For a clue as to the
connection, notice the shorthand you used:
"the two Session classes".

When the differences between a
ClimbingSession and a RowingSession
didn't matter, I abbreviated to Session. In a
sense, I was referring to an imaginary class
that captured what was common between
the two kinds of sessions.

Is method report an example of what you
want to be common between the two kinds
of sessions?

Yes... I want to move report into a more
"generic" class, because you can report on
calories burned for any kind of Session.

class Session
 def report
 print "#{@time} minutes on #{@name} = "
 print "#{calories} calories.\n"
 end
end

If you're trying these examples out in IRB, exit and restart
it before defining the above class.

Let's draw a picture of the three classes and
where the methods will live.

Session
report

RowingSession
initialize
calories

ClimbingSession
initialize
calories

DRAFT 8 DRAFT

Now you need a way to say that a
RowingSession is a kind of Session.

How about this notation?

class RowingSession < Session
 def initialize(name, time)
 @name = name
 @time = time
 end

 def calories
 @time * 3
 end
end

ch2-rowingsession-as-subclass.rb. If you get a warning
message, that means you forgot to exit IRB and restart it.

What does that mean?

A RowingSession is a kind of Session.
Methods specific to RowingSessions live in
the RowingSession class; methods that
apply to all Sessions live in the Session
class.

Object-oriented people say that
RowingSession is a subclass of Session and
(conversely) Session is a superclass of
RowingSession.

What is the result of this?

row_sess = RowingSession.new("buffy", 30)

It creates a RowingSession object. The
arguments to new are given to the initialize
method defined in RowingSession.

What is the result of this?
row_sess.report

The RowingSession object is sent the
report message. RowingSession doesn't
define a report method. But, since
RowingSession is a subclass of Session,
Ruby looks for report there. It finds it and
uses it.

More specifically, the result is just as
before:

30 minutes on buffy = 180 calories.

DRAFT 9 DRAFT

We say that RowingSession inherits report
from Session.

What would ClimbingSession look like?
(Don't bother completing calories yet.)

class ClimbingSession < Session
 def initialize(name, time, program,
 weight)
 @name = name
 @time = time
 @program = program
 @weight = weight
 end

 def calories
 ...
 end
end

Notice anything about the two versions of
initialize? (RowingSession's and
ClimbingSession's)

They have two lines in common:
@name = name
@time = time

Because all Sessions will involve a named
machine and a time spent on it, I wish I
could move those lines into the Session
class.

Can you do that for RowingSession? All I need to do is move the definition of
initialize from RowingSession to Session:

class Session
 def initialize(name, time)
 @name = name
 @time = time
 end
end

ch2-rowingsession-initialize.rb

What does our picture look like now?

Session
initialize
report

RowingSession
calories

ClimbingSession
initialize
calories

DRAFT 10 DRAFT

What will happen as a result of this call?
RowingSession.new("buffy", 30)

The method new for the class
RowingSession will create a RowingSession
object. Then it will send an initialize
message to that object. Since
RowingSession has no initialize method,
Ruby looks in its superclass, Session. It
finds it there, so it invokes it.

What about this call, keeping in mind that
ClimbingSession's initialize hasn't moved?

ClimbingSession.new("biff", 23,
 "hill run",
 84)

You can't run this because ClimbingSession's calories
hasn't been defined yet.

The method new for the class
ClimbingSession will create a
ClimbingSession object. Then it will send
an initialize message to that object. Since
ClimbingSession defines initialize, that one
gets invoked. The one in Session is
ignored.

Can you move the duplicate code from
ClimbingSession to Session?

I'm not sure how. Only two of the lines
within ClimbingSession's initialize method
can be moved. The other two lines have to
stay, because they set instance variables
unique to ClimbingSessions:

class ClimbingSession
 def initialize(name, time, program,
 weight)
 @name = name # can move
 @time = time # can move
 @program = program # must stay
 @weight = weight # must stay
 end
end

What's the problem?

There must be an initialize method in
ClimbingSession to initialize @program
and @weight. Ruby will call that method
when it sees

ClimbingSession.new(...)
But how, then, will Session's initialize
method be called?

DRAFT 11 DRAFT

Can you show me what you need in the
form of code?

I need to know what goes in the ??? slot.

class Session
 def initialize(name, time)
 @name = name
 @time = time
 end
end

class ClimbingSession < Session
 def initialize(name, time, program,
 weight)
 ???
 @program = program
 @weight = weight
 end
end

It's something that calls the method of the
same name in the superclass.

Call that mechanism super.

class ClimbingSession < Session
 def initialize(name, time, program,
 weight)
 super(name, time)
 @program = program
 @weight = weight
 end
end

ch2-both-sessions.rb. Exit and reenter IRB before loading
it.

Please explain how initialization happens
in this case:

ClimbingSession.new("biff", 23,
 "hill run",
 84)

The new method on class ClimbingSession
creates a new object. It sends the initialize
message to that object, which invokes the
initialize method from ClimbingSession.
The first thing that method does is invoke
the initialize method in the superclass
Session. After that version of initialize
initializes @name and @time, the original
initialize resumes and initializes @program
and @weight.

DRAFT 12 DRAFT

Whew! Maybe a picture of the structure,
including instance variables, would help.

You've drawn the inheritance hierarchy
of these classes. RowingSession and
ClimbingSession inherit two instance
variables from Session. RowingSession
inherits two methods. ClimbingSession
inherits only one (report), because it
shadows the other (initialize).

This moving of code from place to place –
creating superclasses and subclasses as I
discover commonality – is exhilarating.
But I'm not ashamed to say it also makes
me a bit nervous. I'm making the code
more pleasing, but what if I break
something that used to work?

The technique is called "refactoring". The
book to read is Martin Fowler's
Refactoring: Improving the Design of
Existing Code.

I think I'll take a break, run off and buy it.

How about a little summary of inheritance
first?

A superclass like Session defines protocol
for its subclasses. Any class that inherits
from Session responds to the message
report. It must implement calories for
report to work, so calories is also part of
the protocol.

In this way, inheritance is like including a
module.

Right. It seems, though, that a module
provides implementation (method
definitions) for all the messages in its
protocol. A class may leave some or all of
the implementation to the subclasses. For
example, Session leaves calories to the
subclasses.

Session
@name
@time
initialize
report

RowingSession
calories

ClimbingSession
@program
@weight
initialize
calories

DRAFT 13 DRAFT

The Fifth Message
Classes define protocols for their subclasses.

Shall we play class badminton? It will help
clarify how inheritance works.

Many people of my culture and with my
muscle mass would scorn badminton. But
I, being cosmopolitan as well as muscular,
realize it is a game of agility, wit, and
reflex. So I'm ready.

Here are the rules. In real badminton, two
players hit a "shuttlecock" back and forth
with rackets. We'll suppose we have two
classes, Super and Sub, instead of rackets.
A class "has the shuttlecock" when a
method defined in it is executing. It hits the
shuttlecock to the other class by causing
one of that class's methods to execute.

Oh. Mental agility and wit, not physical.
Well, I can do that too.

Serve me up a problem.

Sure.

class Super class Sub < Super
 def refined def refined
 end super
 unique
 def unique end
 end end
end

Given Sub.new.refined, what happens?

(If no initialize method is defined, all that
new does is create the object.)

ch2-badminton1.rb

This:

class Super class Sub < Super
 def refined def refined
 end super
 unique
 def unique end
 end end
end

Sub gets it first, hits it to Super (via super),
who returns it (by returning from refined).
Sub hits it right back by explicitly calling
unique. Super returns it, and Sub doesn't hit
it back. Point for Super.

DRAFT 14 DRAFT

How about this one?

class Super class Sub < Super
 def inherited def slam
 bounce end
 slam end
 end

 def bounce
 end
end

What happens with Sub.new.inherited?

ch2-badminton2.rb

class Super class Sub < Super
 def inherited def slam
 bounce end
 slam end
 end

 def bounce
 end
end

An exciting volley! Because Sub doesn't
define inherited, Super gets the shuttlecock
first. It calls bounce – in effect bouncing
the shuttlecock up in the air on Super's side
of the net. When the shuttlecock comes
down (bounce returns), Super slams it over
the net at great speed, expecting Sub to be
helpless. But Sub is ready and returns the
volley. Super, unprepared for the skillful
return, drops the shuttlecock (by returning
from inherited).

I don't think bouncing the shuttlecock is
legal badminton, though.

DRAFT 15 DRAFT

How about this minor addition?

class Super class Sub < Super
 def inherited
 bounce def bounce
 slam end
 end

 def bounce def slam
 end end
end end

What happens with Sub.new.inherited this
time?

Note that Sub.new answers a Sub object.
For a Sub object, Ruby will always begin
looking for methods in the Sub class.

ch2-badminton3.rb

class Super class Sub < Super
 def inherited
 bounce def bounce
 slam end
 end

 def bounce def slam
 end end
end end

Sub triumphs again! As before, Super tried
to bounce the shuttlecock on its side of the
net. This time, though, Sub had a bounce of
its own. Because Ruby will look for
methods starting at Sub, Sub's bounce
method was called – converting Super's
illegal move into a hit over the net. Super –
disconcerted – handled Sub's return from
bounce and tried to slam it back. Sub
returned the slam, and Super dropped it.
Stellar!

Sub seems to dominate Super.

Generally, I find the right side in any
sparring, verbal or physical, fares better.

Quite. Let's suppose the classes are as
above, but the game begins differently:

Super.new.inherited

Since the object created is a Super, Ruby
will always start looking for methods there.
Sub is irrelevant. That leads to this:

class Super class Sub < Super
 def inherited
 bounce def bounce
 slam end
 end

 def bounce def slam
 end end
end end

There is no slam method in Super, so
execution must fail.

?

DRAFT 16 DRAFT

Super is what is called an abstract class.
Abstract classes define protocols. They
also provide method implementations and
instance variables to the concrete classes
that inherit from them. But they aren’t
intended to be instantiated (made into
instances, created as objects using new).

A programmer creating an abstract class
should make sure his friends know what
methods their subclasses should
implement.

And I suppose that suggestive names, like
AbstractSession, would help avoid
mistakes.

Naming is an important issue. Kent Beck's
Smalltalk Best Practice Patterns is the
book to read.

Smalltalk is a different language than
Ruby?

Yes, but it is also a "pure" object-oriented
language. Most everything you'll see in this
book can also be done in Smalltalk.

I'll look it up.

The Sixth Message

If a class and its superclass have methods with the same name,
the class's methods take precedence.

We should explore how instance variables
work with inheritance. Here's an example:

class Super class Sub < Super
 def super_set(val) def sub_set(val)
 @val = val @val = val
 end end

 def super_get def sub_get
 @val @val
 end end
end end

ch2-badminton4.rb

I see two classes. Both of them change
variables named @val. But is the @val in
Super the same as the @val in Sub?

Let's see. What is the effect of this?
s = Sub.new
s.super_set(5)
s.super_get
s.sub_get

Both super_get and sub_get answer 5.

DRAFT 17 DRAFT

And how about this?
s.sub_set("dawn")
s.super_get
s.sub_get

Both super_get and sub_get answer
"dawn".

How do instance variables work with
inheritance?

When superclasses and subclasses use the
same variable name, they mean the same
variable. Variables are not shadowed the
way that methods are.

Let's explore why that happens. Please
draw Super and Sub.

Here:

I'm not sure where to put @val. It should
only go in one place because either class
can change it.

Suppose you execute this code:
s1 = Sub.new
s1.sub_set(1)
s2 = Sub.new
s2.sub_set(2)

Do the two objects have the same value of
@val?

No. Each instance has a different value.
That suggests that an instance should have
a separate box, containing its unique
instance variables:

Yes. I earlier had you put instance variables
together with methods in one box. That
was an oversimplification.

But does this explain why Super and Sub
share the instance variable?

s1
@val

 Sub
sub_set
sub_get

 Super
super_set
super_get

creates

 Sub
sub_set
sub_get

 Super
super_set
super_get

DRAFT 18 DRAFT

Remember that self is always the receiver
of a message.

So, given s1.sub_set(1), self is s1. Here's
the picture:

And given s1.super_get?

self is the same.

So...? It's not really that Super shares Sub's
variable or vice-versa. It's that they both
refer to the same variable, stored in self.

The Seventh Message

Instance variables are always found in self.

s1
@val

 Sub
sub_set
sub_get

 Super
super_set
super_get

creates

self

s1
@val

 Sub
sub_set
sub_get

 Super
super_set
super_get

creates

self

 Version 0.1

 Copyright © 2001 by Brian Marick. All Rights Reserved.
DRAFT (marick@visibleworkings.com) DRAFT

A Little Ruby, A Lot of Objects

Chapter 3: Turtles All The Way Down

You seem a disciplined sort: exercising,
eating good food.

If only it were true.

What do you mean?

Sometimes I'm at the store, walking past
the ice cream freezer, and I lose all
discipline. I reach in and grab some.

A little too much of this, eh?
IceCream.new.eat

I'm afraid so.

Perhaps we should change the world, once
and for all, such that ice cream were not
available.

So that IceCream.new returned an instance
of Celery?

We could do that.

Show me.

We'll work up to it. First, some pictures.
Can you describe this class, then draw a
picture of it?

class IceCream
 def initialize(starting_licks)
 @left = starting_licks
 end

 def lick
 @left = @left – 1
 if @left > 0
 "yum!"
 elsif @left == 0
 "Good to the last lick!"
 else
 "all gone"
 end
 end
end

IceCream initializes an IceCream instance
with the number of times you can lick it.
The lick method makes the IceCream
smaller: each time you lick it, there's one
less lick @left. Here are the methods and
the instance variable:

Somehow this isn't doing much to wean me
from ice cream.

IceCream
initialize
lick

creates
an IceCream

@left

DRAFT 2 DRAFT

You've shown that IceCream creates an
instance. Once the instance is created, what
is the relationship between it and its class?

Hint: given this:

anIceCream = IceCream.new(100)
what happens for this?

anIceCream.lick

When an IceCream instance receives a
message (such as lick), it uses the class to
find what method implements that
message. The arrow below shows that.

I notice that new isn't in either box. Where
does it belong?

Hmm. It certainly doesn't belong in the
instance box on the right. But it shouldn't
belong in the class box on the left either.

Why not?

When an IceCream instance receives a
message, it looks to the left to find the
method. If new were in the class box, that
would mean the instance would respond to
new, like this:

anIceCream.new(100)
We don't want that.

No, new should be something the class
responds to, not the instance.

Given this:
IceCream.new(100)

the class is the object that receives the
message. So, for consistency, it too should
look left to find the right method.

Show me.

I'll have to borrow some of your space.

I don't know what the name of that leftmost
box should be, though.

IceCream
initialize
lick

lookup

an IceCream
@left

IceCream
initialize
lick

lookup

an IceCream
@left

 ???
new

DRAFT 3 DRAFT

Such objects are usually called
metaclasses. "Meta" is supposed to have
the connotation of "beside" or "above" or
"beyond".

Well, from the perspective of the IceCream
instance, that new box is beyond the
IceCream class. So I'll add that name:

All this seems weighty and over-elaborate.

Only because you haven't finished building
up your metaclass muscles.

Notice that we initialize our IceCream with
the number of licks:

anIceCream = IceCream.new(100)

It might be more convenient to create
IceCream instances in standard sizes.

I myself would choose only a small ice
cream.

So add this to the picture:
anIceCream = IceCream.small

The small method goes on the metaclass.

Here's how our new method would be
defined:

class IceCream
 def IceCream.small
 new(80)
 end
end

ch3-small-icecream.rb

I see two odd things about that definition.
The first is the name, which is
IceCream.small. I'm used to method
definitions that start like this:

class IceCream
 def lick
 ...

IceCream
initialize
lick

lookup

an IceCream
@left

 meta IceCream
new

IceCream
initialize
lick

lookup

an IceCream
@left

 meta IceCream
new
small

DRAFT 4 DRAFT

Prefacing the name of the method with the
name of the class tells Ruby that this
method applies to the class object itself, not
to instances.

FunnyNumber.small is a class method.
Everything we've defined before now has
been an instance method (like lick or
initialize).

The format is easy to remember, because
you define class methods the same way you
use them:

def IceCream.small ...

anIceCream = IceCream.small

What's the second odd thing?

I am used to typing IceCream.new, but the
definition of IceCream.small refers to an
unadorned new:

def IceCream.small
 new(80)

When no object is specified, where is a
message sent?

self. So the definition is equivalent to

def IceCream.small
 self.new(80)

And what object is self in that context?

self is always the receiver of the message.
This computation started by sending a
small message to IceCream. So self can
only be the IceCream class itself. Like this:

What would be another way of invoking
IceCream.new within this def?

Directly:

def IceCream.small
 IceCream.new(80)

IceCream
initialize
lick

lookup

an IceCream
@left

 meta IceCream
new
small

DRAFT 5 DRAFT

You now have the tools to change your
world. Start a definition of IceCream.new.

It's just like any other class method:

class IceCream
 def IceCream.new(starting_licks)
 ???
 end
end

And what should IceCream.new do?

It should make a Celery:

class IceCream
 def IceCream.new(starting_licks)
 Celery.new
 end
end

But how can I be sure it works?

Let's suppose you try to lick the celery.

How perverse!

class Celery
 def lick
 "licking celery? yuck!"
 end
end

So IceCream.new(100).lick should produce
"licking celery? yuck!"

ch3-icecream-as-celery.rb

And what should IceCream.small.lick
produce?

The same thing, because IceCream.small
uses IceCream.new (via the implicit self).

There's another way to check that you have
the right object. All objects in Ruby
respond to the class message. Try it.

IceCream.small.class answers Celery. Say,
I notice that Celery doesn't have quotes
around it, so it's not a String.

No, it is the Celery class itself.

That means I can send messages to what
class answers, like this:

food = IceCream.small
more_food = food.class.small

Both food and more_food would be
instances of Celery.

DRAFT 6 DRAFT

Yes, that's true.

Another example of polymorphism. As
long as I know food is an instance of a
class that obeys the "small portions"
protocol, I can create more instances like it.
I don't necessarily have to know what kind
of food it is.

All class objects obey a protocol: they all
implement a new method that creates a new
instance. Some class methods may extend
that protocol to create instances in special
ways.

Interesting. Let's have some... celery.

The Eighth Message

Classes are objects with a protocol to create other objects

Did you enjoy your celery?

No. My enthusiasm for eliminating ice
cream from the world has vanished.

Perhaps an occasional ice cream wouldn't
hurt.

There is something called the "80/20 rule",
which advocates having a virtuous diet
only 80% of the time.

Let us arrange for you to get ice cream one
time out of five.

OK. Then I'll have something to look
forward to.

In Ruby, 3%5 means "what remains after
dividing 3 by 5".

In this case, it would be 3.

And in this case?
13%5

3, again. 13 divided by 5 is 2, with a
remainder of 3.

And this?
5%5

0. Ice cream time! I could get celery when
the remainder was 1, 2, 3, or 4, then ice
cream when it was 0.

DRAFT 7 DRAFT

Can you sketch what a more palatable
IceCream.new would look like?

To increment a variable, you can write
either this:

variable = variable + 1
or this shorthand:

variable += 1

class IceCream
 def IceCream.new(starting_licks)
 ??? += 1
 if ??? % 5 == 0
 IceCream.new(starting_licks)
 else
 Celery.new
 end
 end
end

What should I name the variable?

How about @created? That's a good name
for the number of IceCream instances
created.

The "@" tells me @created is an instance
variable. I guess I can use an instance
variable in a class, because a class is an
object. But I'm not sure how all this will
hang together.

Let's use the picture you drew earlier.
Within the method IceCream.new, what
does self mean?

self is always the receiver of the message.

What's the rule for instance variables?

An instance variable's value is always
found in self.

So when we use an instance variable in a
class method, the variable is to be found
in ...

... the class! Like this:

IceCream
initialize
lick

lookup

 an IceCream
@left

 meta IceCream
new
small

IceCream
initialize
lick
@created

lookup

 an IceCream
@left

 meta IceCream
new
small

DRAFT 8 DRAFT

So this should work:

class IceCream
 def IceCream.new(starting_licks)
 @created += 1
 if @created % 5 == 0
 IceCream.new(starting_licks)
 else
 Celery.new
 end
 end
end

Maybe. Is @created originally zero?

If an instance variable's value is used
before it's ever been set, its value is nil.

So the first time IceCream.new is called,
Ruby will add 1 to nil.

Since nil+1 is nonsense, Ruby will
complain of an error.

So I must initialize @created. But where?

Anywhere outside an instance method will
do.

Right, because initializing @created inside
an instance method (such as initialize)
wouldn't refer to the class's @created – self
would be an IceCream instance, not
IceCream itself. How about just sticking it
here?

class IceCream
 @created = 0
 def IceCream.new(starting_licks)
 ...
 end
end

ch3-celery-sometimes.rb

Looks good. Try it out. You can either use
something like this:

IceCream.new(100).class
or this:

IceCream.small.class

I'll get ice cream on my fifth try. The first
IceCream.small.class gives me Celery. The
second, Celery. The third, the same. The
fourth, the same. The fifth... Hey!

What seems to be the problem?

I got Celery again. I am bitterly
disappointed.

DRAFT 9 DRAFT

Can you see why we got Celery?

The problem is here:

 def IceCream.new(starting_licks)
 @created = @created + 1
 if @created % 5 == 0
 IceCream.new(starting_licks)
 else
 Celery.new
 end
 end

We used IceCream.new because that's the
way you create an instance. But we're in
the middle of redefining IceCream.new. So
when @created is 5, our new new calls
itself, which increments @created to 6 and
so returns a Celery.

A problem. We have to do something else.

We have to call the previous version of
new.

Have we ever done anything like that
before?

Yes, sort of. ClimbingSession used super to
call Session's initialize method. What
would happen if I did the same thing here?

 def IceCream.new(starting_licks)
 @created = @created + 1
 if @created % 5 == 0
 super(starting_licks)
 else
 Celery.new
 end
 end

ch3-celery-sometimes-works.rb Exit and restart IRB so
that @created is reset to 0.

Try it and see.

Celery. Celery. Celery. Celery. IceCream!

Let's eat.

Wait just one cotton-pickin' minute here.
IceCream isn't a subclass of anything, so
how can it use super?

DRAFT 10 DRAFT

You can find a class's superclass with the
superclass method.

I use this:
IceCream.superclass

The result is Object.

Object is a superclass of all other classes. It
defines methods we've been using without
thinking about where they're defined,
methods like class, superclass, ==, and
send.

These methods apply to objects of any
class, because all classes inherit from
Object.

That looks like this:

But new is not defined in Object.

No, otherwise instances could respond to
new and create new instances. Is new
defined in a meta Object? Like this?

IceCream
initialize
lick
@created

lookup

 an IceCream
@left

 meta IceCream
new
small

Object
class
==
send

IceCream
initialize
lick
@created

lookup

 an IceCream
@left

 meta IceCream
new
small

Object
class
==
send

 meta Object
new

DRAFT 11 DRAFT

It could be, but for convenience it's defined
as an instance method of a class named
Class. Meta Object inherits from it.

Like this:

Now you know what the super in
IceCream.new means.

It means "look above meta IceCream for a
method new". That method is found as an
instance method of class Class.

Let's review the arrows in this diagram.
What does a left pointing arrow mean?

If a message is sent to an object, the left
pointing arrow is used to begin the search
for a method with the same name.

For example, the IceCream class is the
place to start searching when an IceCream
instance is sent the lick message.

And meta IceCream is the place to start
searching when IceCream is sent a new
message.

You can create a generic unadorned Object
with Object.new. Where does the search
start in that case?

Meta Object is the place to start searching
when Object is sent a new message.

IceCream
initialize
lick
@created

lookup

 an IceCream
@left

 meta IceCream
new
small

Object
class
==
send

 meta Object

Class
new

DRAFT 12 DRAFT

And if no such method is found in the
object the arrow points to?

The upward pointing arrow is used to find
the next object to check.

Because meta Object does not define new,
the search continues in Class.

And if no method is found when you hit the
topmost object in the column?

The original object does not respond to that
message. For example, you may have tried
to send upcase to an Integer or factorial to
a String.

And what is the rule about self?

No matter where the method is found, self
is always the original receiver of the
message.

Any questions?

You bet. You said Class is a
"convenience". Why? And why is it a class
instead of a metaclass?

Those are good questions. Let's take a
break first. Perhaps sushi is a compromise
between the indulgence of ice cream and
the ascetic boredom of celery.

Sushi seems oddly appropriate. Let's go!

The Ninth Message

Methods are found by searching through lists of objects.

You wanted to know why Class is a
convenience?

Yes.

What kind of thing is IceCream.small?

Because of the tricky code we wrote, most
of the time it's a Celery. You can find that
out like this:

IceCream.small.class

And what kind of thing is Celery itself?

It's a class. You can find that out like this:
Celery.class

The result is Class.

Ruby's designer could have eliminated
Class by putting the new method in meta
Object. Would something like metaObject
be a better answer for Celery.class?

No. Class is more suggestive.

DRAFT 13 DRAFT

Class Class is a convenient name to use to
suggest behavior common to all classes.

That's true even though, in some sense, the
true "class of Celery" is meta Celery.

Yes. Think of sending the class message to
an object as a way of getting a hint about
what protocol the object obeys.

Just a hint?

Just a hint. We've already seen an example
of how the hint can be wrong.
IceCream.class is a Class. Because of that,
we expect that IceCream.new will produce
a new instance of IceCream. But it doesn't,
not always. We'll later see other ways in
which the class hint can be wrong.

OK. I accept that Class is a convenience
and that the class method is just a hint.

There's another reason for the Class object.

What does Celery.new do?

It creates a new instance of Celery.

How does it do it?

It looks for new in Celery's metaclass,
eventually finding it in Class.

That's how instances are created. How are
classes themselves created?

Hmm. Class.new seems like a good
message.

Yes. Here's a way to create a subclass of
Celery:

OrganicCelery = Class.new(Celery)

I was used to this:
class OrganicCelery < Celery
end

But now I see that's syntactic sugar again.
Interesting.

DRAFT 14 DRAFT

We'll see more about that in later chapters.
In the meantime, where can this new new
method be found?

Well, the rule is always to look left, where
you find... the meta Class. Like this:

Is this too complicated?

All the boxes make it seem complicated,
but I guess it's really not. There's a simple
rule: you always find methods by starting
at an object, calling it self, looking left,
then looking up. It doesn't matter whether
the object is an instance, a class, or your
Aunt Marge.

Are you content now? Except for the fact that our IceCream class
doesn't work.

What!

What happens when you do this?

class TripleFudge < IceCream
end

TripleFudge.new(1000)

IceCream
initialize
lick
@created

lookup

 an IceCream
@left

 meta IceCream
new
small

Object
class
==
send

 meta Object

Class
new

meta Class
new

DRAFT 15 DRAFT

Hmm... "undefined method + for nil". I'm
perplexed.

A picture will help you understand. Here's
the new class:

When TripleFudge receives the new
message, it finds the new method in meta
IceCream.

When that method operates on @created, it
looks for the variable in self.

self is the original receiver of the message:
TripleFudge...

... which does not contain a variable
@created.

Actually, it soon does. Ruby executes this
line of code inside IceCream.new:

@created = @created + 1

That means looking for @created's value
inside self (TripleFudge). When Ruby
discovers that the variable does not exist, it
creates it.

So TripleFudge does have a @created, but
it's a completely different variable than
IceCream's. They have the same name, but
there's no reason for them to have the same
value.

And, since TripleFudge's new variable
@created has never been set, its initial
value is...

... nil. And the attempt to increment self by
1 means sending the message + to nil,
which is nonsense.

Hence the error message.

It seems confusing for Ruby to create a
variable with value nil when a program
uses a variable that does not exist.

It's really no more confusing than a
"variable does not exist" message, once
you've seen it a few times. And some
programs can usefully take advantage of
this behavior.

I'll take your word on that – for now. We
need a way to have IceCream.new operate
on IceCream's @created no matter what
the original receiver. That's a puzzler.

 meta IceCream
new
small

IceCream
initialize
lick
@created

lookup

 an IceCream
@left

TripleFudge

meta TripleFudge

DRAFT 16 DRAFT

Hmm... I've got it! To manipulate
IceCream's @created, we must be inside a
method that has self set to IceCream.

Yes, but self is set to TripleFudge when
we're inside new.

So new should send a message explicitly to
IceCream. Within that method, self will be
IceCream.

Such a method could be called
IceCream.allowed? It says whether to
create a Celery or an IceCream.

 def IceCream.new(starting_licks)
 if IceCream.allowed?
 super(starting_licks)
 else
 Celery.new
 end
 end

Write IceCream.allowed?, please.

I pull out some of the code that was in our
previous version of IceCream.new:

class IceCream
 def IceCream.allowed?
 @created += 1
 @created % 5 == 0
 end
end

ch3-celery-final.rb Exit and restart IRB so that @created
is reset to 0

Try it.

I'll mix up requests for plain IceCream and
for the really good stuff.

IceCream.new(1).class is Celery.
TripleFudge.new(99).class is Celery.
IceCream.new(1).class is Celery.
TripleFudge.new(99).class is Celery.
TripleFudge.new(99).class is TripleFudge.
Yes!

DRAFT 17 DRAFT

Will TripleFudge.small work?

Yes. Sending small to TripleFudge runs
this method:

class IceCream
 def IceCream.small
 new(80)
 end
end

new(80) means self.new(80). So the
receiver of new will be the same as the
receiver of small – that is, TripleFudge.

So let me ask again: Is this too
complicated?

Well, the underlying rules are simple. Look
left, then up. self is the original receiver.
But it can be twisty to keep track of what's
where.

That's because we're writing tricky methods
that do unusual things. In most cases, you
don't have to think about what self is or
where methods are found.

This is tricky. But whatever doesn't kill me
makes me stronger. Nietzsche.

Gesundheit. The fascinating thing about
computation is how much you can
accomplish with combinations of simple
rules.

I'm starting to see that. Tricks like an
IceCream.new that answers a Celery...
those can't be anticipated.

A language that provides lots of features
will always be missing that one feature you
need.

But a language that chooses the right
simple rules for you to combine lets you
build the features you need.

And it can come with lots of features, too.
The book to read about Ruby's features is
Programming Ruby, by David Thomas and
Andrew Hunt.

In order to get strong enough to carry all
these books you're having me buy, I'm
going to have to go the gym and lift some
more weights.

The Tenth Message

In computation, simple rules combine to allow complex possibilities

DRAFT 18 DRAFT

Let's tie up a couple of loose ends. Here is
our class picture again.

It's quite familiar now.

What's the answer if you send the class
message to the IceCream instance in the
picture?

IceCream.

How is it gotten?

By looking left, then up, from the instance,
and finding the class method in Object.
That method answers IceCream.

What is the result of IceCream.class?

Class, which is appropriate.

How is that result obtained?

You look left and then up, starting at
IceCream.

And where do you find class?

You don't, not in this picture.

Where should you find it?

Object. That means that looking up from
Class should land you in Object.

IceCream
initialize
lick
@created

lookup

 an IceCream
@left

 meta IceCream
new
small

Object
class
==
send

 meta Object

Class
new

meta Class
new

DRAFT 19 DRAFT

So the arrow up from Class should curve
back down to Object. Don't fix the picture
yet.

I want to. I'd rather have clarity than save
paper.

Should there be an arrow up out of meta
Class?

Yes. Since Class inherits from Object,
meta Class should inherit from meta
Object.

Why's that?

Consistency. Class has the same
relationship to Object as IceCream does.
So meta Class should have the same
relationship to meta Object as meta
IceCream does.

IceCream
initialize
lick
@created

lookup

 an IceCream
@left

 meta IceCream
new
small

Object
class
==
send

 meta Object

Class
new

meta Class
new

DRAFT 20 DRAFT

Now you may draw a picture.

You're very gracious.

So what happens when we send the class
message to Class?

The class method is found by looking left
and up from Class.

And where is it found?

In Object. Meta Class inherits from meta
Object, and meta Object inherits from
Class, and Class inherits from Object.

And what does Class.class answer? Class, like IceCream, is a Class. That
makes sense, because it follows the new
protocol.

Have we drawn a pretty picture in this
chapter?

Nearly as pretty as a picture of an ice
cream cone in the window of an ice cream
shop. Let's go.

Shall we walk to an ice cream shop?

I know one quite nearby.

The Eleventh Message

Everything inherits from Object.

IceCream
initialize
lick
@created

lookup

 an IceCream
@left

 meta IceCream
new
small

Object
class
==
send

 meta Object

Class
new

meta Class
new

